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Three-dimensional lattice Boltzmann BGK model and its
application to �ows with heat transfer in a rectangular

microchannel

Y. T. Chew∗;†, X. D. Niu‡ and C. Shu§

Department of Mechanical Engineering; National University of Singapore; Singapore 117576; Singapore

SUMMARY

In this paper, we present a 3D lattice Boltzmann BGK model for simulation of micro �ows with heat
transfer. This model is an extension of the two-dimensional model that is based on the kinetic theory
and the thermal lattice Boltzmann method. The kinetic relations of the relaxation times in this model
were linked with the Knudsen number, and a di�use scattering boundary condition for the velocity and
thermal �elds was presented for the 3D lattice Boltzmann method. The present 3D lattice Boltzmann
model was successfully applied to simulate the �ow and heat transfer in rectangular channels using
the 3D TLLBM developed by the authors. Numerical results obtained by the present method show that
the LBM can give a good prediction of the micro �uidic behaviours with thermal e�ects. Copyright ?
2005 John Wiley & Sons, Ltd.
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INTRODUCTION

The rapid development of micro electromechanical systems (MEMS) has resulted in an
increasing demand for highly e�cient electronic cooling technologies [1, 2]. To meet this
demand, a deep understanding of the �ow and heat transfer in micro scale is important. To
date, extensive numerical and experimental studies on this topic have been carried out by
many authors [3–8]. However, most numerical works are based on solving the continuum
Navier–Stokes (N–S) and energy equations. Theoretically, since the size of a device is of
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micro scale, the continuum �ow assumption is no longer valid because the characteristic
length of the �ow is of comparable order of magnitude of the mean free path � and the
inter-molecular interactions are manifested. The microscopic �ows are usually characterized
by a dimensionless parameter—the Knudsen number Kn= �=H (H is the characteristic length
scale of the �ow). When Kn¿ 0:01, the �ow is considered to be in the slip (0:01¡Kn6 0:1)
�ow, transition (0:1¡Kn6 10) or free molecular (Kn¿10) regime according to the ranges of
Knudsen number. Numerical studies of these kinds of �ows should be based on the solution
of full Boltzmann equation (BE) [9–11], or the particle methods involving molecular dyna-
mics (MD) [12], or the direct simulation Monte Carlo (DSMC) method [13]. However, the
computational e�ort of the MD and the DSMC methods is usually huge even with the use of
most powerful supercomputer, and the schemes used for solving the full BE are complicated
because they require the integration of a six-independent-variables function.
Recently, the lattice Boltzmann method (LBM) has received considerable attention by �uid

dynamic researchers [14, 15]. The LBM is designed to solve the lattice Boltzmann equation
(LBE) kinetically on a regular lattice where a number of �ctitious particles evolve accord-
ing to the laws pertaining to the basic �uid principles of mass, moment and energy con-
servation. Unlike the MD and DSMC methods, the number of particles distributed in the
computational �eld in the LBM is not related to the number of molecules. Therefore, the
LBM is computationally more e�cient than the MD and DSMC methods. Furthermore, since
the LBM solver is based on a simple BGK collision approximation [16], one avoids solv-
ing complicated schemes needed for the full BE. Besides, the LBM is intrinsically kinetic
since the BGK collision approximation essentially represents the physics of molecular inter-
actions, and the equilibrium distribution function in the approximation can be considered as
an e�ective equilibrium of the molecular motions. Hence it has a strong theoretical founda-
tion to be taken as an alternative simpler means to model the microscopic �uid dynamics
problems.
In this paper, we present a three-dimensional (3D) lattice Boltzmann BGK model for simu-

lating the micro �ow with heat transfer. This 3D model is an extension of the two-dimensional
model [17] that is based on the classic kinetic theory [18] and the thermal lattice Boltzmann
method (TLBM) [19]. The TLBM has been shown capable of simulating thermal �ow with
arbitrary Prandtl numbers by de�ning density and internal energy density distribution func-
tions separately with their respective relaxation times representing hydrodynamic and thermo-
dynamic �elds [19]. The di�erence between the present 3D model and the 2D model proposed
in Reference [17] is that the relaxation times are rede�ned and linked to the Knudsen number
based on the kinetic theory [18] and hard sphere assumption [9, 20]. Besides, in consistency
with the kinetic theory, a di�use-scattering boundary condition (DSBC) for the 3D LBM is
presented in this paper according to our previous work [17] so that the velocity slips and
temperature jumps at walls are captured correctly.
To verify the present 3D lattice Boltzmann BGK model, a developing thermal �ow in

a rectangular microchannel with di�erent aspect ratios is studied using our Taylor series
expansion and least square-based LBM (TLLBM) [21] which can be applied on non-uniform
grids. The TLLBM is a meshless method and has been proven to be an e�cient and accurate
solver for simulating the continuum �ows [22, 23]. The results obtained by present LBM are
compared with those of Tunc and Bayazitoglu [24] and the DSMC method [25]. Their works
are based on solutions of the traditional momentum and energy equations with �rst-order
velocity slip and temperature jump conditions.
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3D THERMAL LATTICE BOLTZMANN MODEL FOR MICROFLUIDICS

The thermal lattice Boltzmann equation with BGK model [17] is derived from the kinetic
theory and can be written as

f�(r+ e��t ; t + �t) =f�(r; t) +
�t

�f + 0:5�t
(feq� (r; t)− f�(r; t)) (1)

g�(r+ e��t ; t + �t) = g�(r; t) +
�t

�g + 0:5�t
(geq� (r; t)− g�(r; t))

− �g�t
�g + 0:5�t

f�(r; t)h�(r; t) (2)

where

f� = f� +
�t
2�f

(f� − feq� ) (3)

g� = g� +
�t
2�g
(g� − geq� ) +

�t
2
f�h� (4)

h� = (e� − u) ·
[
−∇(P=�) + 1

�
∇ · ∏

+ (e� − u) · ∇u
]

(5)

and f� and g� are the density distribution function and the internal energy density distribution
function, respectively; feq� and geq� are their corresponding equilibrium functions; �f and �g
are the relaxation times of the hydrodynamic and thermodynamic �elds, respectively; r(x; y; z)
is coordinate vector, e� is the lattice velocity, � is the lattice direction and �t is the time
interval.
In the study of 3D �ow problems, the 3D 15-bit discrete velocity (D3Q15) model [15] is

usually used. The equilibrium function feq� and geq� with the D3Q15 model [14, 15] can be
written as

feq� = w��
[
1 +

3e� · u
c2

+
9(e� · u)2
2c4

− 3u2

2c2

]
(6)

geq� = w���
[
3(e2� − u2)
2c2

+ 3
(
3e2�
2c2

− 1
)
(e� · u)
c2

+
9(e� · u)2
2c4

]
(7)

where

e�=

⎧⎪⎪⎨
⎪⎪⎩

0; �=0

(±c; 0; 0); (0;±c; 0); (0; 0;±c); �=1− 6
(±c;±c;±c); �=7− 14

(8)

and c=
√
3RT0 and T0 is the average temperature. w� is the weighting coe�cient and is 2=9

for �=0, 1=9 for �=1− 6 and 1=72 for �=7− 14.
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In the conventional Boltzmann equation with BGK model, the relaxation time �f and �g
can be linked to the viscosity and thermal conductivity of �uid in such a way that the correct
continuity, momentum and energy equations at continuum N–S level are recovered [15, 21]
through Chapman–Enskog expansion [26]. However, the above process may not be applicable
to the micro �ow. This is because the process of recovering the Navier–Stokes level equations
implicitly uses continuum assumption, which may not be true for the micro �ow. From the
kinetic theory [9, 18], we know that the collision frequency in the BGK model can be written
as 4P=�� for hydrodynamic �eld or 2P=5R	 for thermodynamic �eld, where � and 	 are the
viscosity and thermal conductivity of �uid, respectively. This implies that �f and �g can be
written as

�f =
�
4
�
P
=
�
4
�
�c2s

(9)

�g =
�

Pr �c2s
(10)

where cs is the sound speed, Pr (=�cp=	) is the Prandtl number, cp (= 
R=(
− 1)) is speci�c
heat capacity at constant pressure and 
 (=5=3 for a monatomic ideal gas and 7=5 for a
diatomic gas) is the heat capacity ratio of gas.
According to kinetic theory, for the hard sphere molecules [9, 13], the Knudsen number

can be written as

Kn=
√
�

2
Ma
Re

(11)

where Re=�U∞H=� is the Reynolds number and Ma=U∞=cs is the Mach number. For the
D3Q15 model, cs is taken as cs= c=

√
3 and c is usually chosen as 1. So, Equation (11) can

also be written as

Kn=
�
4

√
�

2

�
�csH

(12)

By combining Equations (9)–(12), we obtain

�f ≈ �
4
H · Kn (13)

�g ≈ �
4
H · Kn
Pr

(14)

Equations (13) and (14) are used in the present work to determine the relaxation times once
Kn number is given.
The macroscopic density �, velocity u, internal energy � and pressure P can be computed

by the conservation laws of mass, momentum, energy and the equation of state

�=
∑
�
f� �u=

∑
�
f�e� ��=

∑
�
g� − �t

2
∑
�
f�h� P=

2
D
�� (15)

where �=DRT=2, T is the temperature and D is the dimension.
The boundary condition is an important issue for LBM simulation in micro�uidic systems.

Theoretically, the particle–solid interactions should be adequately addressed when the particles
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impinge and emerge at solid wall surfaces, and this issue should be traced to the kinetic theory.
According to our previous derivation [17], a di�use scattering boundary condition (DSBC) for
the density distribution function f� and similarly for the internal energy density distribution
function g� in the LBM on any kind of boundary geometries can be constructed as

|(e� − uw) • n|f� =
∑

(e�′ −uw)•n¡0
|(e�′ − uw) • n|�f(e�′ → e�)f�′ (16)

|(e� − uw) • n|g� =
∑

(e�′ −uw)•n¡0
|(e�′ − uw) • n|�g(e�′ → e�)g�′ (17)

and

�f(e�′ → e�) =
AN
�w
((e� − uw) • n)feq�

∣∣∣∣
u= uw

(18)

�g(e�′ → e�) =
BN
�w�

((e� − uw) • n)geq�
∣∣∣∣
u= uw; �= �W

(19)

where �′ and � are directions of the incident and re�ected particles, respectively, and AN and
BN are normalization coe�cients which must guarantee no normal �ow through the wall and
the normal part of the energy �ux is continuous. These two coe�cients are also dependent
on the velocity model used in the LBM.
The inlet boundary conditions in the present study are set at constant velocity, density and

temperature. The variables at the outlet of the channel are extrapolated from the values at
two neighbouring inner points.

TAYLOR SERIES EXPANSION AND LEAST SQUARE-BASED LATTICE
BOLTZMANN METHOD (TLLBM)

The TLLBM developed by Shu et al. [21] is based on the standard lattice Boltzmann equation
(LBE), the well-known Taylor series expansion, the Runge–Kutta method for solving ordinary
di�erential equations, and the least square optimization. Due to the restriction of the LBE to
regular lattice [15], at each time step, the particle described by the LBE may not stream to the
neighbouring mesh point if an irregular grid is used in the computation. However, since the
particle distribution function is a continuous function in physical space and can be well de�ned
in any mesh system, the Taylor series expansion in space can be used to obtain the value
of the distribution functions at corresponding mesh points. The �nal algebraic formulation
of the 3D TLLBM for the density distribution function f� and the internal energy density
distribution function g� can be written as

f�(x0; y0; z0; t + �t) =
N+1∑
k=1
a1; k� f̃

k−1
� (20a)

g�(x0; y0; z0; t + �t) =
N+1∑
k=1
a1; k� g̃

k−1
� (20b)
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where N is the number of neighbouring mesh points around the reference mesh point (x0; y0),
a1; k� are the elements of the �rst row of the following matrix [A], and

[A]= ([S]T[S])−1[S]T (21)

[S] is a (N + 1)× 10 dimensional matrix, which is given as

[S]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 �x0 �y0 �z0 (�x0)2=2 (�y0)2=2 (�z0)2=2 �x0�y0 �x0�z0 �y0�z0

1 �x1 �y1 �z1 (�x1)2=2 (�y1)2=2 (�z1)2=2 �x1�y1 �x1�z1 �y1�z1

− − − − − − − − − −

− − − − − − − − − −

− − − − − − − − − −

1 �xN �yN �zN (�xN )2=2 (�yN )2=2 (�zN )2=2 �xN�yN �xN�zN �yN�zN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N+1)×10

(22)

where

�xi = xi + e�x�t − x0; �yi=yi + e�y�t − y0; �zi= zi + e� z�t − z0

f̃k� =f�(xk ; yk ; zk ; t) +
�t

�f + 0:5�t
[feq� (xk ; yk ; zk ; t)− f�(xk ; yk ; zk ; t)]

g̃k� = g�(xk ; yk ; zk ; t) +
�t

�g + 0:5�t
[geq� (xk ; yk ; zk ; t)− g�(xk ; yk ; zk ; t)]

+
�g�t

�g + 0:5�t
f�(xk ; yk ; zk ; t)h�(xk ; yk ; zk ; t)

k =0; 1; : : : ; N

Since the coe�cients only depend on the coordinates of mesh points and lattice velocity,
and are computed in advance, the new method is essentially a meshless method, and can be
applied to any lattice velocity model [21].

NUMERICAL SIMULATIONS OF FLOW AND HEAT TRANSFER IN
A RECTANGULAR MICROCHANNEL

As illustrations for the present LBM in simulating the �ow and heat transfer problems, de-
veloping thermal �ows in rectangular microchannels with di�erent aspect ratios are simulated.
The geometry of the problem is given in Figure 1. The centre of the coordinate system is
located at the centre of the channel in the entrance plane. Heat �ux at the wall is constant
both axially and along the periphery. Initially, the �ow is assumed static with a constant
temperature T0. The Reynolds number and the Prandtl number are taken as 0.1 and 0.7, re-
spectively. During simulations, a uniform velocity U0 and a constant temperature Tin =T0 are
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H

L
WFlow

Figure 1. The schematic of �ow through the rectangular microchannel.

imposed at the channel inlet and the �ow at the outlet is assumed hydrodynamically and
thermally fully developed. The DSBC is used on the walls for the density and internal en-
ergy density distribution functions. All simulations are based on the non-uniform grids with
higher concentration close to the wall and the channel inlet and all results are normalized
by the inlet condition unless otherwise mentioned. Since the available data on this problem
are very few, the results obtained are only compared with the analytical results of Tunc and
Bayazitoglu [24] and the DSMC simulations [25]. In their studies, the traditional momen-
tum and energy equations with the �rst-order velocity slip and temperature jump boundary
conditions are solved using the integral transform technique.

Grid-dependence study

The grid-dependence study based on the case of thermal �ows in a channel with aspect ratio
of �=H=W =1 for inlet Knudsen number of Kn=0:04; 0:06 and 0.08 is �rst conducted.
It should be noted that the lower the aspect ratio �, the more slender the regular cross-section
of the duct. In the present computation, W is kept constant and � is varied by changing
H, and Kn is always de�ned in terms of inlet conditions. Three mesh sizes with the same
minimum grid stretch ratio of 0:04 in the computational domain are examined and they are
201× 13× 13, 201× 15× 15 and 201× 17× 17 with minimum grid spacings of 0:024; 0:014
and 0.008, respectively. The results of the grid-dependence study are displayed in Table I in
terms of the non-dimensional wall slip velocities US and the Nusselt number at the channel
outlet. The slip velocity, Nusselt number and friction coe�cient are de�ned as

US = us=ub (23)

Nu =
Dhqw;m

	(Tw;m − Tb) (24)

Cf =
Sw;m

(1=2)�u2b
(25)

where ub=
∫ W
0

∫ H
0 u dy dz=WH is the bulk mean velocity; Tb=

∫ W
0

∫ H
0 �uT dy dz=

∫ W
0

∫ H
0 �u

dy dz is the bulk mean temperature; qw;m=[
∫ W
0 (	@T=@z)w dy +

∫ H
0 (	@T=@y)w dz]=(W +H)

is the peripheral mean wall heat �ux; Tw;m=[
∫ W
0 Tw dy +

∫ H
0 Tw dz]=(W + H) is the periph-
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Table I. The grid-dependence study based on the case of
thermal �ows in a channel with aspect ratio �=1 for di�erent

inlet Knudsen numbers at the exit plane of channel.

Mesh Us−ave Nu

Kn=0:04
201× 13× 13 0.2576 3.09
201× 15× 15 0.2548 3.16
201× 17× 17 0.2551 3.18

Kn=0:06
201× 13× 13 0.3207 2.81
201× 15× 15 0.3183 2.87
201× 17× 17 0.3150 2.89

Kn=0:08
201× 13× 13 0.3814 2.60
201× 15× 15 0.3742 2.62
201× 17× 17 0.3738 2.62

eral mean wall temperature; and Sw;m=[
∫ W
0 (�@u=@z)w dy +

∫ H
0 (�@u=@y)w dz]=(W +H) is the

peripheral mean wall shear stress, respectively; Dh=4WH=(2W + 2H) is the hydraulic diam-
eter of the channel. As shown in Table I, the di�erence between the present results on three
grid sizes is less than 2%. This indicated that the grid size 201× 15× 15 is su�cient for
the present LBM to obtain accurate numerical results and hence it is used in the following
simulations.

Developing thermal �ows in a rectangular channels

Figures 2(a) and (b) shows the velocity and temperature distributions in the microchannel
for �=0:5 and Kn=0:06. As shown in these �gures, the �ow becomes quickly fully
developed after a short entrance region where the hydrodynamic and thermal boundary layers
are developing simultaneously. Because of a larger temperature gradient near the wall, the
acceleration near the wall is greater than that at the centre, especially at the entrance region.
A more detailed illustration of the �ow �eld in the entrance region for �=0:5 and Kn=0:06 is
shown in Figures 3(a)–(d) and 4(a)–(d), where the dimensionless x-component velocity and
temperature pro�les at di�erent positions along the channel are plotted. From Figures 3(a)–(d)
and 4(a)–(d), obvious velocity slips and temperature slips at the walls are observed because
of the rarefaction e�ects. They also indicate that the �ow is fully developed within a distance
less than the width of the channel.
To verify the accuracy of the present method, we compare the velocity pro�les along the

horizontal and vertical centrelines of the cross-section at the exit of the channel between
the present simulations, the analytical solution based N–S equations [24] and the DSMC
simulations [25] in Figures 5(a) and (b) for the cases of Kn=0:05 and �=0:2. The Kn
and � were chosen to match the available published results for comparison although in the
present study, we focus on Kn=0:04; 0:06; 0:08. As shown in Figure 5, the results obtained
by di�erent approaches agree well with each other.
The variation of average friction coe�cients and Nusselt numbers at channel outlet with

respect to the aspect ratio for di�erent inlet Knudsen numbers are given in Figures 6(a)
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Figure 2. Velocity and temperature distributions in the microchannel for �=0:5 and Kn=0:06:
(a) velocity distribution along the channel; and (b) temperature distribution in the channel.

and (b). For the same aspect ratio, the friction coe�cient decreases with increasing inlet
Knudsen number. This trend is reasonable since the �ow is more rare�ed at higher Knudsen
number. For the same Knudsen number, the friction coe�cient decreases as the aspect ratio
becomes smaller, i.e. the channel becomes slender. This can be explained in term of the
reduced slip velocity at the corner as indicated in Figure 3. When the channel becomes
slender, the larger slip velocity region in the middle section of z direction decreases. In this
region, the velocity gradient in the y direction is large and hence the contribution to skin
friction stress is high. A reduction in this middle section region in the z direction would result
in overall reduction in skin friction coe�cient. Regardless of the value of the aspect ratio, the
Nusselt number always decreases when Kn increases. Again it is reasonable to expect a lower
convective heat transfer rate due to rarefaction e�ect at higher Knudsen number. The Nusselt
number also decreases with decreasing aspect ratio. This can also be explained in term of
reduced temperature slip at the corner as indicated in Figure 4 in a similar way as that for
reduced friction coe�cient. When the channel becomes slender, the larger slip temperature
region in the middle section of z direction decreases. In this region, the temperature gradient
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Figure 3. Dimensionless velocity pro�les at the entrance region of the microchannel for �=0:5 and
Kn=0:06: (a) x=W =0:0; (b) x=W =0:3442; (c) x=W =0:7826; and (d) x=W =1:230.

in the y direction is large and hence the contribution to heat transfer is high. A reduction in
this middle section region in the z direction would result in overall reduction in heat transfer
and hence Nusselt number.
The most interesting phenomenon observed in Figure 6 is that the trend of variation of the

friction coe�cients with aspect ratio in the micro channel �ow is completely di�erent from
that of the non-slip macro-channel �ow [27]. Although it is expected that the rare�ed �ow
will have a lower friction coe�cient than that for continuum �ow, the opposite in trend of
variation with aspect ratio is intriguing. The above observations can be explained in term of
non-slip velocity condition at the wall for continuum �ow. As explained before, the decrease
in skin friction coe�cient when the �ow channel become slender is due to the variation of
slip velocity at the wall. Such variation cannot occur in continuum �ow as the slip velocity is
zero. It is noted that for continuum �ow, the friction stress at corner �ow region is relatively
smaller due to lower velocity there. This has been the inspiration for the introduction of
riblet device to reduce skin friction stress in boundary layer �ow. For very slender channel,
the �ow becomes almost two-dimensional similar to that between two �at in�nite plates.
Thus it is natural to expect that the corner �ow e�ect is reduced and the friction coe�cient
increases as the channel becomes slender. The present results clearly indicate the inadequacy
of the continuum assumption in Navier–Stokes solvers for micro-channel �ows as it not only
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Figure 4. Dimensionless temperature pro�les at the entrance region of the microchannel for �=0:5 and
Kn=0:06: (a) x=W =0:0; (b) x=W =0:3442; (c) x=W =0:7826; and (d) x=W =1:230.
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Figure 5. Comparison of the velocity pro�les of the centrelines of the cross-section at the exit of the
channel between di�erent approaches for Kn=0:05, �=0:2.

predicts the magnitude of friction coe�cient wrongly, but also its trend of variation with
aspect ratio.
Table II compares the slip velocity and the Nusselt numbers obtained by our simulations

with those of Tunc and Bayazitoglu [24] at the mid width W of wall in the exit plane of
channel. As shown in this table, the slip velocities obtained by our simulations are close to the
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Figure 6. The variation of the friction coe�cient and Nusselt number with respect to the aspect ratio
for di�erent inlet Knudsen numbers: (a) friction coe�cient; and (b) Nusselt number.

Table II. Comparisons of the slip velocity and the Nusselt
numbers obtained by present simulations and those of Tunc
and Bayazitoglu [24] at the mid width W of wall in the exit

plane of channel.

Us Nu

� Reference [24] Present Reference [24] Present

Kn=0:04
1 0.21 0.25 2.85 3.16
0.75 0.25 0.27 2.81 3.06
0.5 0.32 0.30 2.71 2.92

Kn=0:06
1 0.28 0.31 2.69 2.87
0.75 0.33 0.33 2.62 2.79
0.5 0.41 0.36 2.48 2.66

Kn=0:08
1 0.34 0.37 2.53 2.60
0.75 0.39 0.38 2.44 2.54
0.5 0.48 0.41 2.26 2.44

analytical results of Tunc and Bayazitoglu while the Nusselt numbers obtained by the present
method are larger than those of Tunc and Bayazitoglu. The deviations between our simulations
and the work of Tunc and Bayazitoglu may be attributed to the insu�cient consideration of
the rarefactions in the analysis of Tunc and Bayazitoglu, in which the rarefaction e�ects are
only considered on the wall boundaries. This resulted in their slip velocities and temperatures
being constant along the x direction. It is rather di�cult to expect this since the rarefaction
e�ect varies along the channel length.
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CONCLUSIONS

A 3D lattice Boltzmann BGK model for micro �ow and heat transfer had been presented
based on kinetic theory considerations and the thermal lattice Boltzmann method. The kinetic
relations of the relaxation times were rede�ned and linked with the Knudsen number. A di�use
scattering boundary condition (DSBC) for the velocity and thermal �elds was presented for
the 3D LBM. The present 3D lattice Boltzmann model was successfully applied to simulate
the �ow and heat transfer in rectangular micro-channels using our 3D TLLBM. Numerical
simulation shows that the LBM can give a good prediction of the micro �uidic behaviours
with thermal e�ects, and clearly indicate the inadequacy of the continuum assumption in
Navier–Stokes solvers for micro-channel �ows.
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